钢等铁磁材料及其加工构件具有优良的硬度、强度及韧性等机械性能,被广泛应用于桥梁建筑、能源运输、交通工程等一系列关乎国民生计的重要领域。 铁磁构件长时间暴露在比较糟糕的环境中,如超高温度、较高负荷等恶劣环境下,容易使得材料承受能力变弱甚至产生裂纹等。无损检测是评估材料性能的重要技术手段,能及时发现材料缺陷,保证安全。裂纹是导致材料失效的重要原因之一,被称为“工业癌症”。铁磁构件在长期载荷下,局部由于受力不均出现残余应力以及应力集中,最终导致裂纹的产生,使得构件变形断裂引发事故。如图a为斜拉索大桥长期超荷下,导致斜拉索断裂,桥面坍塌。图b为钢轨长时间应力集中,得不到释放,导致钢轨变形,危及行车安全。图c为天然气输送管道长期高压下,产生裂纹,导致天然气泄漏,发生火灾。归根到底,应力是导致铁磁材料性能退化,产生缺陷的重要因素。可通过应力检测对构件材料的工作情况进行预判。 图a 拉索桥长期载荷导致坍塌 图b 应力集中导致钢轨变形 图c 长期高压导致天然气管道泄漏 如何检测铁磁材料构件的微观缺陷、应力状态和疲劳状态并预测剩余寿命是工程应用中的一个比较棘手的问题。应力无损检测技术是可以解决这一问题的重要技术手段。一方面,要判断应力集中的位置;另一方面,它可以用来分析被评价构件的状态并预测其发展趋势并进行测量,进行安全评价,发现不安全地区,以便及早发出警报。 巴克豪森法残余应力检测仪可以对材料的残余应力分布进行快速检测和鉴别。作为X射线衍射法的补充,对大量样品的快速鉴别效率极高,GNR公司现已推出MagStress5c 巴克豪森应力检测仪。
古老的油画和历史手稿是宝贵的文化遗产,这些文物所用的颜料和墨水等原料让人们能够深入了解艺术史实等信息。此外,对油墨等原料的相关检测还能够提供原产地溯源、真伪等诸多信息,甚至对后续的修缮工作具有指导性作用。在诸多检测手段中,元素检测是重要的一项,其常见的检测手段有:原子吸收、原子发射、质谱法、电子探针、中子活化分析、XRF等。 各种检测方式的优缺点 虽然原子吸收、原子发射、质谱法、电子探针及中子活化分析都需要由文物上取样,属于有损分析,对有价值的艺术品来说,是无法接受的;XRF分析是非破坏性的,然而普通台式设备对样品大小并不友好。虽然,手持式XRF已有成功应用的案例,但其仍有如下的不足:过深的分析深度会涉及颜料层、清漆层、底层支撑物、甚至污染物、底层,所得信号可能无法代表颜料层,进而导致结果不具代表性。 TXRF分析特性 待检测的样品仅需要很少的量(微克或微升)置于载体之上便能满足检测需求,是一种非常温和的技术。甚至取样可仅使用棉签在待分析位置轻轻擦涂少量油墨,便可置于样品玻片,完成后续检测。
常见难溶样品如:碳化硼、碳化硅、氮化硼在磨料、特种刀具、核工业等领域有广泛的应用。其杂质元素检测通常采用ICP-OES、GD-MS、DCA、ICP-MS等设备,部分标准如下: GB/T 3045-2017 普通磨料 碳化硅化学分析方法 湿法消解ICP-OES GB/T 34003-2017 氮化硼中杂质元素测定方法 微波消解ICP-OES ASTM C791 核级碳化硼的化学、质谱及光谱分析标准方法 高压消解/碱熔ICP-OES/MS法 JB/T 7993-2012 碳化硼化学分析方法 消解后分光光度法 ? 常规方法所面临的难点 ICP-OES及ICP-MS需要湿法消解或微波消解,带来如下问题:样品稀释、定容后,因稀释造成检出限变差、费时、大量化学试剂、潜在污染风险; GDMS及DCA设备价格高,操作复杂。 ? 使用TXRF检测的优点 采用悬浊法、加入内标后直接上机检测; 大幅缩短前处理时间,仅需干燥、混匀等操作; 无需使用大量化学试剂; 简化检测流程:采用内标法定量,无需绘制标准曲线; 在线富集可进一步提升检出限。
水质应急分析在各国一直备受重视且投入巨大。面对突发的水质污染事件,对其中的元素进行分析,特别是重金属元素分析的重要性日益突显。其中,快速且全面的甄别出可能的污染物、尽量短的时间内实现定量检测是应急监测的终极目标。 常用的检测手段有:ICP-MS、AAS、ICP-OES、AFS等。其中,AFS、AAS一次只能测定一种元素,检测多个元素多采用 ICP-OES或 ICP-MS法。但二者有着较为严重的基体、光谱及质谱干扰。因此,找到一种可兼顾检测效率、干扰小的检测方法显得尤为重要。 本文将介绍使用Horizon全反射X射线荧光光谱仪进行水样的检测。样品经适当前处理后,便可上机,降低酸的引入带来的污染问题;使用内标及内置曲线,避免了基体效应;使用在线富集方式可降低元素检出限,测量简单快速。
蛋白质是构成生物体的重要组成部分,对人体的生长发育和维持正常生理功能都起着重要的作用。同时,蛋白质也是食品中重要的营养指标。不同食品中蛋白质的含量各不相同,测定食品中蛋白质的含量,对于评价食品的营养价值、合理开发利用食品资源、提高产品质量优化食品配方等方面均具有极其重要的意义。 本文采用意大利欧维特(EUROVECTOR)公司的EA3100杜马斯蛋白质分析仪测定食品(油条、酱牛肉、豆腐泡、调味料、大豆、酱油)中的蛋白质含量。
残余应力是指在没有对物体施加外力时,物体内部存在的保持自相平衡的应力系统。它是固有应力或内应力的一种,在一些零件或标准的要求中,需要将应力释放来满足实际使用要求,主要有以下几种方法: 1、锤击法 利用钢锤锤击工件残余应力聚集的部位,使工件接受锤击的金属表面受到锤击的压应力,发生局部的塑性变形,从而减小残余应力的峰值,改善和均衡工件原有残余应力的分布,避免工件的脆性破坏。 这种方法特别适合与焊接件,且在焊接加工场合应用广泛,对冲压件使用不多。 2、振动时效法 利用专有设备使工件在专用设备的周期性外力作用下发生共振,使工件内部的微观组织晶粒发生滑移和晶内孪生,从而削减残余应力的峰值,改善和均衡工件原有的残余应力的分布。 这种方法在一小时内可以消除约50%的残余应力或削减50%残余应力的峰值,是使用很普遍的方法之一,处理效率高,节约成本,但缺点是不能完全消除工件内聚集的残余应力。 3、热处理时效 是传统的消除残余应力的方法,又称为人工时效。它借助热处理设施,将工件由室温缓慢、均匀加热至600℃左右,并在此温度保温4-8h,而后温度缓慢冷却到120℃以下,再出炉冷却至室温。 这种方法消除残余应力的效果很好,消除速度快、充分。 4、自然时效 是将工件放置于室外,任其“风餐宿露”,在静置过程中释放和消除残余应力。 这种方法不适用于工业化大批量生产的产品。但是,对于高价值和高精度设备的关键部件,则采用人工时效+自然时效的方法较为普遍。 5、焊接应力消除 焊接中焊缝处温度迅速升高,体积膨胀。热影响区温度低,阻碍焊缝膨胀,结果焊缝处产生压应力,热影响区产生拉应力。但此时焊缝处于塑性状态,焊缝被压应力墩粗,松弛了此应力。 焊后冷却时,热影响区冷却速度快,很快进入弹性状态,焊缝处温度高,处于塑性状态。这时焊缝收缩,较热影响区收缩慢,焊缝阻碍热影响区收缩,焊缝仍受压应力,影响区受拉应力。但焊缝处于塑性状态,焊缝的塑性墩粗,松弛了此应力。 6、机械加工应力消除的方法 在切削加工后采取一些处理措施,也可以对已加工表面的残余应力进行调整,表面强化处理就是目前较常用的方法之一。表面强化处理工艺是通过对零件表面的冷挤压使之发生冷态塑性变形,从而提高其表面硬度、强度,并形成表面残余压应力的加工工艺。常用的表面强化工艺有喷丸强化和滚压强化。喷丸强化是利用大量高速运动中的珠丸冲击零件表面,使打击处发生塑性变形和塑性流动,表面产生冷硬层和残余压应力。珠丸大多采用钢丸,利用压缩空气或离心力进行喷射。这种方法适用于不规则表面和形状复杂的表面,如弹簧、连杆等的强化。滚压强化是用可自由旋转的滚子对零件表面均匀地加力挤压,使表面得到强化并在表面形成残余压应力,适用于规则表面如外圆、孔和平面等的强化加工,可在原机床上加装滚压工具进行。 预应力切削是一种通过切削工艺使机械零件加工表面产生残余压应力的方法,即切削前预先给零件施加一个弹性范围内的预应力,切削过程中零件加工表面会产生弹性变形,切削后释放该预应力,由于基体的弹性恢复,已加工表面会产生残余压应力。预应力切削既不需要购买昂贵的设备,又不会增加零件加工表面的硬度,只需通过切削加工就能使加工表面产生残余压应力,因此其具有良好的发展前景。 切削加工表面残余应力的产生是机械应力和热应力共同作用下引起的不均匀塑性变形的结果,对零件的使用性能和寿命有着直接的影响。在实际生产过程中,需要针对表面层残余应力产生的原因以及影响因素,通过综合运用本文介绍的工艺手段,以及合理选择切削参数、刀具等,可以有效地调整和消除已加工表面的残余应力。 以上就是消除残余应力的主要方法,过程和工序的控制可以通过测量工序间残余应力来实现,X射线法作为无损检测残余应力的方法,其便捷性和准确性得到了业内的认可。
磨削裂绞是淬火后未回火的零件,或含残余奥氏体多的零件磨削时出现的现象,这种裂纹不在磨削中发生,而在磨削后发生。磨削裂纹具有独特的形状,它与淬火裂纹不同,所以可立即进行区别。 磨削裂纹产生的原因一般有下列几方面:淬火后的钢变成马氏体组织,所以它处于膨胀状态,如果把这种淬火钢进行加热,大概到100 ℃发生第一次收缩,继续加热到300 ℃左右时,发生第二次收缩。 另外,钢一经过磨削,磨削区的温度就上升,其温度约为600℃。 因此,若把淬火后的钢件进行磨削,则仅磨削面的温度升高,升到100 ℃时发生第一次收缩。这种收缩仅在表层发生,母体组织仍处于膨张状态。因此,表层受张应力发生龟裂。 这种龟裂称为第一种磨削裂纹。当磨削热严重时,表层温度达到300℃就发生第二次收缩导致主磨削裂纹。这种裂纹称为第二种磨削裂纹。 为防止磨削裂纹,零件淬火后必须回火后再磨削。为防止第一种磨削裂纹,必须在100-200℃的温度范围内回火;为防止第二种磨削裂纹,必须在300℃左右的温度回火。 如果存在残余奥氏体,磨削热会使奥氏体转化为马氏体。若对此马氏体继续进行磨削,也要发生磨削裂纹。 意大利GNR公司是一家老牌的欧洲光谱仪生产商,其X射线产品线诞生于1966年,经过半个多世纪的开发和研究,该产品线已经拥有众多型号满足多个行业的分析需求。ARE X 为专用的残余奥氏体分析仪,无需依靠 搭载模块在常规XRD上 实现残余奥氏体测试,具有操作简便、检测速度快、数据准确等特点,对操作人员要求不高,做到轻松上手。
酱油作为常见的烹饪调味品,其质量安全需受严格控制,因此对酱油的检测显得尤为重要。对人体健康而言,酱油中的有害成分有多种来源,并且在一些研究中已经被检测到(如致癌化合物3-氯丙烷-1,2-二醇)。尽管本文的研究方法不涉及到有机物的检测,但对健康有害的有机物的检出说明酱油检测的重要性。还有一种是添加铁元素的酱油,其中的铁元素主要以铁乙二胺四乙酸铁(EDTA)的形式存在。此类酱油在中国被广泛使用,每天消耗量高达人均15 mL,添加此类物质的目的是改善中国人群中的贫血现象。所以,铁元素的检测对酱油的质量控制至关重要。 本文采用GNR公司Horizon全反射荧光光谱仪,评估用TXRF方法对酱油中微量元素的测定提供快速可靠方法的可能性。我们测定了几种市售酱油样品中微量元素的含量,并与电感耦合等离子体质谱(ICP-MS)的检测结果进行比较,以此来评估TXRF在酱油检测应用的可行性。
1、计数率 在衍射仪方法中,X射线的强度用脉冲计数率表示,单位为每秒脉冲数(cps)。检测器在单位时间输出的平均脉冲数,直接决定于检测器在单位时间接收的光子数。如果检测器的量子效率为100%,而系统(放大器和脉冲幅度分析器等)又没有计数损失(漏计),那么每秒脉冲数便是每秒光子数。 2、 能量分辨 是指检测器接收某一能量的量子(某一波长射线的光量子),所输出脉冲信号的平均幅度与入射量子的能量成正比的特性。 3、闪烁检测器 各种晶体X射线衍射工作中通用性能常用的检测器。它的主要优点是:对于晶体X射线衍射使用的X射线均具有很高甚至达到100%的量子效率;使用寿命长,稳定性好;此外它和PC一样,具有很短的分辨时间(10^-7秒数量级),因而实际上不必考虑由于检测器本身的限制所带来的计数损失;它和PC一样,对晶体衍射工作使用的软X射线也有一定的能量分辨本领。因此通常X射线粉末衍射仪配用的是闪烁检测器。 4、连续扫描 粉末衍射仪的一种工作方式(扫描方式),试样和接收狭缝以角速度比1:2的关系匀速转动。在转动过程中,检测器连续地测量X射线的散射强度,各晶面的衍射线依次被接收。计算机控制的衍射仪多数采用步进电机来驱动测角仪转动,因此实际上转动并不是严格连续的,而是一步一步地(例如每步0.0005°)跳跃式转动,在转动速度较慢时尤为明显。但是检测器及测量系统是连续工作的,连续扫描的优点是工作效率较高。例如以2θ每分钟转动4°的速度扫描,扫描范围从20~80°的衍射图15分钟即可完成,而且也有不错的分辨率、灵敏度和精确度,因而对大量的日常工作(一般是物相鉴定工作)是非常合适的。但在使用长图记录仪记录时,记录图会受到计数率表RC的影响,须适当地选择时间常数。 5、步进扫描 粉末衍射仪的一种工作方式(扫描方式)。试样每转动一步(固定的Δθ)就停下来,测量记录系统开始测量该位置上的衍射强度。强度的测量也有两种方式:定时计数方式和定数计时方式。然后试样再转过一步,再进行强度测量。如此一步步进行下去,完成指定角度范围内衍射图的扫描。用记录仪记录衍射图时,采用步进扫描方式的优点是不受计数率表RC的影响,没有滞后及RC的平滑效应,分辨率不受RC影响;尤其它在衍射线强度极弱或背底很高时特别有用,在两者共存时更是如此。因为采用步进扫描时,可以在每个θ角处作较长时间的计数测量,以得到较大的每步总计数,从而可减小计数统计起伏的影响。 步进扫描一般耗费时间较多,因而须认真考虑其参数。选择步进宽度时需考虑两个因素:一是所用接收狭缝宽度,步进宽度至少不应大于狭缝宽度所对应的角度;二是所测衍射线线形的尖锐程度,步进宽度过大则会降低分辨率甚至掩盖衍射线剖面的细节。为此,步进宽度不应大于尖锐峰的半高度宽的1/2。但是,也不宜使步进宽度过小,步进时间即每步停留的测量时间,若长一些,可减小计数统计误差,提高准确度与灵敏度,但将损失工作效率。 6、微区衍射仪 微区衍射仪是按平行光束型衍射几何设计的,使用特殊的大窗口闪烁检测器或环形窗口的正比检测器。工作时,检测器沿入射线方向移动,通过固定直径的环形狭缝对各衍射锥面的总强度依次地进行测量。由于它使用细平行光束,故能对样品的一个微区(直径可小至30μm)进行衍射分析 意大利GNR公司是一家老牌欧洲光谱仪生产商,其X射线产品线诞生于1966年,经过半个多世纪的技术开发和研究,该产品线已经拥有众多型号满足多个行业的分析需求。 可用于桌面的台式衍射仪ERUOPE、性价比超高的大功率衍射仪APD 2000 PRO、功能强大的多功能高分辨率X射线衍射仪EXPLORER,以及基于XRD在工业及冶金行业应用而专门研发的X射线残余应力分析仪STRESS-X、残余奥氏体分析仪AREX D等多种型号。而全反射X荧光光谱仪(TXRF)的检测限已达到皮克级别,其非破坏性分析特点应用在痕量元素分析中,涉及环境、医药、半导体、核工业、石油化工等行业。
国外标准 X射线法是由俄国学者于1929年提出。 20世纪初,人们就已经开始利用X射线来测定晶体的应力。 1961年,德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。 然而遗憾的是,随着残余应力测试设备制造技术的快速发展,行业缺乏相关标准,缺少足够的设备检定技术依据,导致测试方法无所适从,各实验室很难进行测试数据的比对和能力验证,很难具有公信力。 1971年,美国汽车工程师学会发布第一个行业标准SAE J784a "Residential Stress Measurement by X-ray Diffraction"; 随后1973年,日本材料学会颁布第一个国家标准JSMS-SD-10-73" Standard Method for X-ray Stress Measurement"。 为反映新技术进步和成熟的测试方法,欧盟标准委员会(CEN)于2008年7月4日批准了新的X射线衍射残余应力测试标准 EN 15305-2008"Non-destructive Testing- Test Method for Residual Stress analysis by X-ray Diffraction",该标准于2009年2月底在所有欧盟成员国正式施行。 该标准对X射线残余应力测试的技术和方法等诸多方面进行了更新,解决了上述的行业问题,全面、细致系统阐述了X射线衍射法残余应力分析的原理、测定方法、材料特性、仪器选择和常见问题处理等方面的内容。新标准也因此获得了业界的一致认可。 与之相呼应,美国试验材料学会(ASTM)也于2010年7月发布了最新的美国标准版本ASTM E915-10 "Standard Test Method for Verifying the Alignment of X-ray Diffraction Instrumentation for Residual Stress Measurement"。 之后,欧美国家围绕X射线衍射法,颁布了一系列检测标准,为行业发展树立了标杆,X射线行射法测定残余应力得到了越来越广泛的应用,技术手段也日益成熟。 国内标准 纵观国内,我国最早的X射线应力测定方法标准GB/T 7704-1987,发布于1987年,其主要内容采标自日本标准。 受限于当时的软件水平、测试技术、探测器制造技术和数据采集技术,GB/T 7704-1987具有许多不足: 首先,其内容相对简单,术语和定义仅6条,定峰方法只有半高宽和抛物线两种,整个标准只有7页; 其次,其应用范围窄,仅适用于铁素体钢系和奥氏体钢系某一给定方向的平面应力; 另外,只能采用CrK α 和CrK β 射线源,采用计数管扫描寻峰,寻峰方式工作效率较低。 GB/T 7704-2008是GB/T 7704-1987的修订版,经过20 多年的发展,设备制造技术有了较大提升,方法也有了较大变化,当时欧盟标准尚未发布,但SAE(美国汽车工程师协会)规范已能检索到。考虑到国内设备的实际情况,GB/T 7704-2008对设备并没有提高要求,零应力检定仍然保持和GB/T7704-1987的相同,但是在术语定义、定峰方法、测试方法等方面作了扩展。 GB/T 7704-1987及GB/T 7704-2008,其技术要求过于简单,技术水平较低,主要根据当时我国应力测试设备的制造现状而制定,无法及时和国际先进技术同步。因此,2012年,在国家无损检测标委会的直接推动下,国家标准化委员会批复同意启动了GB/T7704-2008的修订工作。最终于2015年12月完成了标准的修订工作,即现行的GB/T 7704-2017。 最新修订的GB/T 7704中增加了大量术语和定义(三维应力、设备、方法相关),使得过去一些含糊不清的描述表达变得规范化。为了使标准的应用更为广泛,新国标中增加了三维残余应力的理论计算方法以及具体测定流程,以帮助广大X射线应力测试工作者正确理解和执行标准,为获得比较可靠的试验结果提供了必要的理论解惑和技术支持。